Germs of integrable forms and varieties of minimal degree

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Germs of Integrable Forms and Varieties of Minimal Degree

We study the subvariety of integrable 1-forms in a finite dimensional vector space W ⊂ Ω(C, 0). We prove that the irreducible components with dimension comparable with the rank of W are of minimal degree.

متن کامل

Sums of Squares and Varieties of Minimal Degree

The study of nonnegativity and its relation with sums of squares is a basic challenge in real algebraic geometry. The classification of varieties of minimal degree is one of the milestones of classical complex algebraic geometry. The goal of this paper is to establish the deep connection between these apparently separate topics. To achieve this, let X ⊆ P be an embedded real projective variety ...

متن کامل

On the Universal Gröbner Bases of Varieties of Minimal Degree

A universal Gröbner basis of an ideal is the union of all its reduced Gröbner bases. It is contained in the Graver basis, the set of all primitive elements. Obtaining an explicit description of either of these sets, or even a sharp degree bound for their elements, is a nontrivial task. In their ’95 paper, Graham, Diaconis and Sturmfels give a nice combinatorial description of the Graver basis f...

متن کامل

Prym Varieties and Integrable Systems

A new relation between Prym varieties of arbitrary morphisms of algebraic curves and integrable systems is discovered. The action of maximal commutative subalgebras of the formal loop algebra of GLn defined on certain infinite-dimensional Grassmannians is studied. It is proved that every finite-dimensional orbit of the action of traceless elements of these commutative Lie algebras is isomorphic...

متن کامل

Germs of arcs on singular algebraic varieties and motivic integration

Let k be a ®eld of characteristic zero. We denote by M the Grothendieck ring of algebraic varieties over k (i.e. reduced separated schemes of ®nite type over k). It is the ring generated by symbols ‰SŠ, for S an algebraic variety over k, with the relations ‰SŠ ˆ ‰S0Š if S is isomorphic to S0; ‰SŠ ˆ ‰S n S0Š ‡ ‰S0Š if S0 is closed in S and ‰S S0Š ˆ ‰SŠ‰S0Š. Note that, for S an algebraic variety ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2010

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2009.09.005